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Abstract

We have designed and built a simulation package in C++ which provides discrete

process based simulation similar to SIMULA's simulation class and libraries.

Inheritence was used throughout the design to an even greater extent than is already

provided by SIMULA. This has allowed us to add new functionality without

affecting the overall system structure, and hence provides for a more flexible and

expandable simulation package. This paper describes the class hierarchy which we

have created, and indicates how it can be used to further refine the simulation

package. An example of the use of the simulation package is presented along with

the results obtained.
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1. Introduction

This paper describes the steps which we have taken when designing and building a

simulation package in C++[Stroustrup 86]. Our package (C++SIM) provides discrete process

based simulation similar to that provided by SIMULA [Birtwhistle 73][Dahl 70] and has been used

in the work presented in [McCue 92]. Based on the facilities provided in SIMULA, our simulation

environment provides active objects (instances of C++ classes) as the units of simulation using the

type-inheritence facilities of C++ to convey the notion of "activity". Inheritance was used

throughout the design of the simulation package to even a greater extent than is already provided in

SIMULA. For example, our I/O facilities, random number generators and probability distribution

functions are entirely object-oriented, relying on inheritance to specialize their behaviour. Hence,

the addition of new functionality (e.g., new random number generators) can be provided with little

effect on the overall system structure.

Using this framework, existing classes can also be replaced as long as they conform [Black

86] to the original class definition: for example, to enable each object within the simulation to

possess an independent thread from that which created it, we have made use of Sun Microsystem's

lightweight process (thread) package; however, this package has been added to our simulation

class hierarchy through an abstract class definition so that other lightweight process packages can

be used instead with very little modification. The paper describes the class hierarchy which we

have created, and indicates how it can be used to further refine the simulation package.

2. The Simulation Library

2.1. The C++ Abstract Threads Interface

In keeping with the C++ programming model classes obtain the thread characteristic,

necessary to convey the notion of "activity" within the simulation environment, by inheriting an

appropriate base class (in simulation terms they become processes). There is a minimum

functionality which we require from any threads library that may be used for the simulation

package, and to enforce this all classes which provide the abstraction of threads must be derived

from the Thread base class. This base class provides the definitions of the operations which must

at least be provided by the deriving class: we use pure virtual functions to enforce this rule (C++

ensures that such functions must be defined by a deriving class before an instance of the class can

be declared):



class Thread

{

public:

virtual void Suspend() = 0; // pure virtual function

virtual void Resume() = 0;

virtual void Body() = 0;

virtual long Current_Thread() = 0;

virtual long Identity();

static Thread* Self();

};

When defined, the Suspend and Resume methods will give thread package specific ways

of suspending and resuming execution of a thread respectively.

Body represents the controlling code for each object, i.e., the scope within which the

controlling thread will execute.

Current_Thread must be defined by the derived class as it returns the identity of the

currently executing thread, which is specific to the thread package used.

The implementations of the operations Identity and Self are provided by the base

class because some threads packages do not provide similar functionality: Identity returns the

unique identity of the thread associated with the given objects, and Self returns the currently

executing thread. Because Self is a static member function it can be invoked without creating an

instance of the Thread class, i.e., using Thread::Self().

2.1.1. Specific Thread Class Implementations

At the time of writing, we have two threads packages available to us: Sun's own

lightweight process package, and the GNU threads library. We have derived two classes from the

Thread base class and these respective threads packages. For example, user classes which

require separate threads of control using the Sun thread package can be derived from the

LWP_Thread class shown below:

class LWP_Thread : public Thread

{

public:

virtual void Suspend();

virtual void Resume();

virtual void Body() = 0;

virtual long Current_Thread();

thread_t Thread_ID();

static void Initialize();

protected:

static const int MaxPriority;

LWP_Thread(int priority = MaxPriority);

};



The MaxPriority constant represents the maximum priority at which a thread may

execute (by default all threads derived from this class execute at this priority). All of the pure

virtual functions declared in Thread are defined by this class, except Body, which must be

defined by the deriving class.

Initialize is used to initialize the threads package prior to use.

Thread_ID returns more detailed (package specific) information on the associated thread.

2.2. The Simulation Scheduler

As in SIMULA, simulation processes (entities) execute according to their simulation time,

which is typically drawn from an appropriate distribution function. Only one process executes in

any instance of real time, but many processes may execute at any instance of simulation time.

Those processes which are currently inactive are placed on to a simulation queue, which is

arranged in increasing order of simulation time.

To co-ordinate the execution of these processes, there is a simulation scheduler which

manages the simulation queue: when no process is currently active, the scheduler selects a process

to run from the head of the queue and (re-) activates it. When no processes are left to execute, i.e.,

the queue is empty, the simulation ends.

To improve the efficiency of our scheduling algorithm, the simulation queue is organised as

a tree, with nodes (processes) at the same level of the tree possessing the same simulation time, as

shown in figure 1:
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time t1

time t2

time t3

time t4

Figure 1: Simulation Queue

Because the scheduler manages processes in the simulation environment it cannot itself be a

process. Like the main thread to be described later, it is a priority thread within the environment

and as such must be controlled in a slightly different manner to other simulation entities. The

structure of the scheduler is extremely simple and is shown below:



class Scheduler : public LWP_Thread

{

public:

Scheduler ();

~Scheduler ();

void Body ();

double CurrentTime ();

};

Every simulation application must start one scheduler before the simulation can begin. The

example to be described in Section 3 will illustrate this.

2.3. Simulation Processes

To become a process in the simulation environment, the class must be derived from the

Process base class. The Process class provides all of the operations required by the simulator

(the scheduler and other simulation processes) to control the execution of all of the processes in the

simulation.

At any point in time, a process can be in one (and only one) of the following states:

• active: the process is at the head of the queue maintained by the scheduler and its actions are

being executed.

• suspended: the process is on the queue maintained by the scheduler, scheduled to become

active at a specified time in the future.

• passive: the process is not on the scheduler's queue. Unless another process brings it back

on to the list, it will not execute any further.

• terminated: the process is not on the scheduler's queue and has no further actions to

execute.



class Process : public LWP_Thread

{

public:

virtual ~Process ();

static double CurrentTime ();

void ActivateBefore (Process&);

void ActivateAfter (Process&);

void ActivateAt (double AtTime = CurrentTime());

void ActivateDelay (double AtTime = CurrentTime());

void Activate();

void ReActivateBefore (Process&);

void ReActivateAfter (Process&);

void ReActivateAt (double AtTime = CurrentTime());

void ReActivateDelay (double AtTime = CurrentTime());

void ReActivate ();

void Cancel ();

double evtime ();

void set_evtime (double);

boolean idle ();

boolean terminated ();

virtual void Body () = 0;

protected:

Process ();

void Hold (double t);

void Passivate ();

};

idle returns either TRUE or FALSE depending upon whether the process is currently on

the simulation queue.

terminated returns either TRUE or FALSE depending upon whether the process is

terminated.

The simulation time at which a process is due to be reactivated can be obtained through the

evtime method and it can be changed by set_evtime.

The Hold method removes the active process from the head of the event list and schedules

it to become active a specified number of time units later.

Pasivate removes the currently active process from the event list altogether. If the

proceess is to be scheduled again in future another process is required.

Cancel removes the process from the simulation queue or simply suspends it indefinitely

if it is currently not on the queue (i.e., it is active at present).



There are five ways of activating a process, and similarly five ways to reactivate a waiting

process (note that if a process is already scheduled, the reactivate will simply re-schedule the

process):

• before another process (ActivateBefore and ReActivateBefore);

• after another process (ActivateAfter and ReActivateAfter);

• at a specified (simulated) time (ActivateAt and ReActivateAt);

• after a specified (simulated) delay (ActivateDelay and ReActivateDelay);

• activate now (at the current simulated time) (Activate and ReActivate).

The CurrentTime method returns the current simulation time, and is typically used to

control action relative to a given time period.

2.3.1. Priority Threads

In the simulation there are two "priority" threads which cannot be derived from the

Process base class and therefore must be activated and deactivated separately:

• the simulation scheduler: this must be activated using the Resume method of the thread

base class from which it is derived (e.g., LWP_Thread);

• the thread associated with main. To allow other threads to run it is necessary to suspend

this thread as it has the highest priority in the system. By making a call to the

Initialize method of the Thread class within the main body of the simulation code

this thread is added to the thread queue maintained by the Thread class. This then allows

the Suspend method to be invoked on the thread later when it is required to become

inactive (using the Thread::Self()->Suspend() operation).

2.4. Distribution Functions

In a simulation it is often necessary to specify the distribution functions of various events

(e.g., the rate of arrivals of jobs at a processor, or the time between failures for a node). As such

we have created a set of classes which provide access to various useful distribution functions.

These include: RandomStream, UniformStream, Draw, ExponentialStream, ErlangStream,

HyperExponentialStream, and NormalStream. By creating instances of these classes the simulation

processes can gain access to the appropriate distribution function.

To illustrate how the distribution functions are derived and to show how further functions

could be built, we shall examine the RandomStream class (from which all other distribution

functions are derived) and the NormalStream class.



2.4.1. RandomStream

class RandomStream

{

public:

RandomStream (long MGSeed = 772531L, long LCGSeed = 1878892440L);

virtual double operator() () = 0;

double Error ();

protected:

double Uniform ();

private:

double MGen ();

double series[128];

long MSeed, LSeed;

};

The Error method returns a chi-square error measure on the uniform distribution

function. We experimented with several random number generators before settling on a shuffle of a

multiplicative generator† (initialised by the MGen method) with a linear congruential generator,

which seems to provide a reasonably uniform stream of pseudo-random numbers. The Uniform

method uses the linear congruential generator based on the algorithm from [Knuth Vol2], and the

results of this are shuffled with the multiplicative generator as suggested by [Knuth Vol2] ‡ to

obtain a sufficiently uniform random distribution.

2.4.2. NormalStream

class NormalStream : public RandomStream

{

public:

NormalStream (double Mean, double StandardDeviation);

virtual double operator() ();

private:

double Mean, StandardDeviation;

double z;

};

The operator()  uses the polar method in [Knuth Vol2]†† to implement the

NormalStream by making use of the Uniform  method of RandomStream.

†  The authors would like to thank Professor I. Mitrani for his help in developing the multiplicative generator used
in the simulation. It is based on the following algorithm: Y[i+1] = Y[i] *  5^5 mod 2^26, where the period is 2^24,
and the initial seed must be odd.

‡ As suggested by Maclaren and Marsaglia.

†† Due to Box, Muller and Marsaglia



2.5. SIMSET

The simulation package also provides entity and set manipulation facilities similar to those

provided by the SIMSET classes of SIMULA. These facilities break down into two classes:

• Link: the Link class provides elements of a doubly linked list;

• Head: the Head class maintains doubly linked lists of Link elements.

The functionality provided by these classes is the same as that provided by SIMSET.

However, for the sake of completeness we shall give a brief description of the methods provided.

2.5.1. Link

class Link

{

public:

virtual ~Link ();

Link* Suc () const;

Link* Pred () const;

Link* Out ();

void InTo (Head*);

void Precede (Link*);

void Precede (Head*);

void Follow (Link*);

void Follow (Head*);

protected:

Link ();

};

Because it makes no sense to be able to create instances of Link objects, the constructor

for Link is protected: this class must be derived from.

Suc and Pred return the 'successor' and 'predecessor' of this list element respectively.

They return 0 if no such element exists.

Out removes this object from the linked list it currently belongs to (if any). InTo places

this object as the last element in the linked list if the list exists, otherwise it attempts to remove the

object from any linked list it may belong to.

If Precede is passed another Link element (say, L) then, if L is a member of a linked list

this object is placed into the same linked list as L immediately preceding it, otherwise the result is

the same as for Out. If Precede is given a Head object then the result is the same as InTo.

Follow has similar action to Precede, except that L.Follow(L1) inserts L

immediately after L1, and L.Follow(H), where H is a Head object, places L as the first element

in H.



2.5.2. Head

class Head

{

public:

Head ();

virtual ~Head ();

Link* First () const;

Link* Last () const;

long Cardinal () const;

boolean Empty () const;

void Clear ();

};

First  and Last  return references to the first and last Link  objects in the list

respectively. If the list is empty then they return 0.

Cardinal returns the number of Link objects in the list, and Empty returns TRUE is

the list is empty, FALSE otherwise. Clear removes all Link objects from the list.

3. Example

Having considered the simulation package, we shall now show how it can be used by

looking at an example.

3.1. Job Service Simulation

This example is taken from [Mitrani 82] and simulates a process scheduler for a machine

which attempts to execute as many process (jobs) as possible. The machine can only process one

job at a time and job requests are queued until the machine can deal with them. However, the

machine is prone to failures, and so jobs started will be interrupted by such failures and delayed

until the machine has been repaired (reactivated) at which point it is forced to restart execution from

the beginning (i.e., it is placed at the head of the job queue). The main processes within this

example are:

• Arrivals: this process controls the rate at which Jobs arrive at the service (Machine);

• Breaks: this process controls the availability of the Machine by "killing" it and restarting

it at intervals drawn from a Uniform distribution;

• Job: this process represents the jobs which the Machine must process;

• Machine: this is the machine on which the service resides. It obtains Jobs from the job

Queue for the service and then attempts to execute them. The machine can fail and so the

response time for Jobs is not guaranteed to be the same;



3.1.1. Arrivals

The Arrivals class definition is relatively simple as no operations are invoked on it by

any of the other processes involved in the simulation:

class Arrivals : public Process

{

public:

Arrivals (double);

~Arrivals ();

void Body ();

private:

ExponentialStream* InterArrivalTime;

};

The constructor initialises the stream from which the rate of Job arrivals is drawn and the

destructor simply cleans up before the object is destroyed:

Arrivals::Arrivals (double mean)

{

InterArrivalTime = new ExponentialStream(mean);

}

Arrivals::~Arrivals () { delete InterArrivalTime; }

The main body of the Arrivals process simply waits for an amount of time dictated by

the stream from which the rate of arrivals of Jobs is drawn, and then creates another Job. This

procedure is repeated until the simulation ends.

void Arrivals::Body ()

{

for (;;) // inifinite loop

{

Hold((*InterArrivalTime)());

Job* work = new Job();

}

}

3.1.2. Job

Unlike Arrivals which is an active entity within the simulation, the Job class does not

need to be a separate process as it is simply enqueued when it is created and dequeued by the

Machine when it can be executed. All a given Job must do is calculate how long it took to be

"processed":



class Job

{

public:

Job ();

~Job ();

private:

double ArrivalTime;

double ResponseTime;

};

Because no operations are invoked on instances of the Job class, all of the work is

performed by the constructor and destructor:

Job::Job ()

{

boolean empty;

ResponseTime = 0;

ArrivalTime = sc->CurrentTime();

empty = JobQ.IsEmpty();

JobQ.Enqueue(this);  // place this Job on to the queue

TotalJobs++;

if (empty && !M->Processing() && M->IsOperational())

M->Activate();  // Machine idle as no Jobs in queue

// and not broken

}

Job::~Job ()

{

ResponseTime = sc->CurrentTime() - ArrivalTime;

TotalResponseTime += ResponseTime;

}

3.1.3. Queue

The jobs which are not being serviced are placed on to a job queue. As with the Job class,

the instance of the Queue class is not required to be active, and as such is not derived from the

Process  class. Because this is simply a standard queue code, we shall not give the

implementation.

class Queue

{

public:

Queue ();

~Queue ();

boolean IsEmpty (); // returns TRUE if no Jobs in queue

long QueueSize (); // returns number of Jobs in queue

Job* DeQueue (); // returns head of queue

void Enqueue (Job*); // places Job at tail of queue

};



3.1.4. Machine

The Machine process obtains Jobs from the queue and processes them. As it is prone to

failures Jobs can take extended periods of time to process. Various operations are invoked on the

machine by other simulation processes, for example to determine whether or not it has failed:

class Machine : public Process

{

public:

Machine (double);

~Machine ();

void Body ();

void Broken ();

void Fixed ();

boolean IsOperational ();

boolean Processing ();

double ServiceTime ();

private:

ExponentialStream* STime;

boolean operational;

boolean working;

};

As with the Breaks and Arrivals processes, the constructor and destructor initialise

and delete the stream from which the time taken to process a Job is drawn.

boolean Machine::Processing () { return working; }

void Machine::Broken () { operational = false; }

void Machine::Fixed () { operational = true; }

boolean Machine::IsOperational () { return operational; }

double Machine::ServiceTime () { return (*STime)(); }



void Machine::Body ()

{

for (;;)

{

working = true;

while (!JobQ.IsEmpty())  // continue as long as Jobs are available

{

Hold((*STime)());

Job* J = JobQ.Dequeue();

ProcessedJobs++;  // keep track of number of completed Jobs

delete J;  // remove finished Job

}

working = false;    // no Jobs in queue so become idle

Cancel();

}

}

3.1.5. Breaks

The Breaks class defines a process which simply waits for a specific period of time

before "killing" the Machine process. It then waits again before re-activating the machine.

Because none of the other simulation processes are required to invoke operations on the Breaks

process, the class definition is relatively simple:

class Breaks : public Process

{

public:

Breaks ();

~Breaks ();

void Body ();

private:

UniformStream* RepairTime;

UniformStream* OperativeTime;

boolean interrupted_service;

};

The constructor and destructor simply initialise and delete the streams used by the Breaks

process respectively.



The main body of the process activates and deactivates the Machine process:

extern Machine* M;    // This is the machine used to service requests

extern Queue JobQ;    // This is the queue from which Jobs are drawn

void Breaks::Body ()

{

for (;;)

{

Hold((*OperativeTime)());

M->Broken();  // de-activate the Machine

M->Cancel();  // remove Machine from Scheduler queue

if (!JobQ.IsEmpty())

interrupted_service = true;

Hold((*RepairTime)());

M->Fixed();  // re-activate the Machine

if (interrupted_service)

{

interrupted_service = false;

M->ActivateAt(M->ServiceTime() + CurrentTime());

}

else

M->ActivateAt();

}

}

3.1.6. MachineShop

The MachineShop class is the core of the simulation: it starts up all of the main processes

involved, and when the simulation ends it prints out the results.

class MachineShop : public Process

{

public:

MachineShop ();

~MachineShop ();

void Body ();

void Await ();

};

The Body method starts up the other processes, e.g., the Machine, and then waits until

the number of processed Jobs is at least 100000:



void MachineShop::Body ()

{

sc = new Scheduler(); // create the simulation queue scheduler

Arrivals* A = new Arrivals(10);

M = new Machine(8);

Job* J = new Job;

Breaks* B = new Breaks;

// activate the relevant simulation processes

B->Activate();

A->Activate();

sc->Resume(); // start up the scheduler - it is not a process

while (ProcessedJobs < 100000)

Hold(10000);

cout << "Total number of jobs processed " << TotalJobs << endl;

cout << "Total response time " << TotalResponseTime << endl;

cout << "Avge response " << (TotalResponseTime/ProcessedJobs) << endl;

cout << "Avge number jobs present " << (JobsInQueue/CheckFreq) << endl;

// end simulation by suspending processes

sc->Suspend();

A->Suspend();

B->Suspend();

}

Note that we do not need to explicitly need to activate Machine as the Breaks or Jobs

process will do this for us.

The Await method suspends the thread associated with main, thus allowing the other

simulation threads to execute:

void MachineShop::Await()

{

Resume();

Thread::Self()->Suspend();

}

3.1.7. Main

The main part of the simulation code initializes the various thread specific variables used

(e.g., the maximum priority of a thread), creates the main body of the simulation code (in this case

MachineShop) and then suspends the thread associated with main:

void main ()

{

LWP_Thread::Initialize();

MachineShop m;

m.Await(); // Suspend main's thread (NOTE: this MUST be done by all

// applications).

}



Conclusions

From the outset we endeavoured to provide a simulation package which provided similar

functionality to that of SIMULA, as this has proved so successful in fulfilling the needs of users

over many years. From our experiences of using SIMULA, both as a general programming

language and as a simulation tool, we believe that we have been successful. As a result of using

C++ we also believe that we have obtained several advantages over the use of SIMULA, for

example:

• performance - it is our experience that C++ compilers typically generate code which is

several times more efficient than similar SIMULA code, and as a result, simulations

execute correspondingly faster;

• C++ provides more extensive object-oriented features than SIMULA, allowing, for

example, class instance variables to be either publicly available or only privately available.

In SIMULA, everything is public, affecting the way code is written and providing extra

problems of debugging.

The results of the simulation package are encouraging and we intend to develop it further in

light of our continued experience.
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